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The influence of a stationary shear flow on the crystallization in a glassy system is studied by means of
molecular dynamics simulations and subsequent cluster analysis. The results reveal two opposite effects of the
shear flow on the processes of topological ordering in the system. Shear promotes the formation of separated
crystallites and suppresses the appearance of the large clusters. The shear-induced ordering proceeds in two
stages, where the first stage is related mainly to the growth of crystallites and the second stage is due to an
adjustment of the created clusters and a progressive alignment of their lattice directions. The influence of strain
and shear rate on the crystallization is also investigated. In particular, we find two plausible phenomenological
relations between the shear rate and the characteristic time scale needed for ordering of the amorphous system
under shear.
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I. INTRODUCTION

Most liquids, under cooling, undergo a first order transi-
tion to a crystalline phase. The classical view is that this
transition takes place through a homogeneous nucleation
process and can be reasonably well described in the frame-
work of classical nucleation theory �1–6�. Nucleation theory
is based on the fact that a nucleation event is an activated
process, taking place on time scales much larger than the
characteristic time scale of the microscopic dynamics. The
free energy of forming crystalline embryos from the meta-
stable surroundings is defined by a positive surface and nega-
tive bulk contributions. The surface term corresponds to the
cost in free energy for creation of an interface between par-
ent and incipient �say, crystalline� phases, whereas the bulk
term is proportional to the volume of the nucleus. The crystal
size, wherein the free energy reaches a maximum and the
system begins to crystallize, defines the critical nucleus.

With the increase of the degree of supercooling �T the
description of the transition toward the ordered phase be-
comes more complicated. On the one hand, the height of
nucleation barrier decreases with supercooling �T as 1 /�T2,
so that at supercooling �40% and higher a very fast crystal
nucleation could be expected �7�. On the other hand, obser-
vations at a very large supercooling indicate nascent droplets
that exhibit a ramified structure �8� and a crystallization pro-
cess with a more extended, collective, and spatially scattered
character that may be attributed to a spinodal regime �9�.
Such tendencies are, however, balanced by the kinetic slow-
ing down, which makes the ordering process more and more
difficult to observe as the temperature is lowered. In the
limit, where the system is deeply supercooled and becomes
glassy, crystal formation is completely unobservable on ex-
perimental time scales.

The application of external field on a glassy material may
change considerably this picture of nucleation. What influ-
ence has an external forcing, such as shear flow and/or strain,
on the nucleation process of a glass? Experimental studies of
amorphous �co�polymers reveal the appearance of shear-
induced crystallization �10–13�. This is verified by molecular
dynamics simulations, which provide some evidence for an
increase of ordering in sheared polymeric and model binary

glasses �14,15�. Recently, results of molecular dynamics
simulations showed that the oscillating shear strain can pro-
mote crystallization in model jammed systems �16�. How-
ever, the influence of shear rate and strain on the ordering
processes as well as the possibility of crystallization under
stationary shear have remained unclear.

At a moderate supercooling, simulation results on the
sheared colloidal melts of Refs. �17,18� demonstrate the sup-
pression of nucleation by a homogeneous shear flow. More
precisely, they reveal that the probability of the nucleation
decreases, while the size of critical nuclei increases with the
shear rate. In glassy systems at low temperatures, on the
other hand, it is reasonable to suggest that the external drive
can activate dynamical processes �19,20�. A moderate exter-
nal shear field will increase the local diffusivity in the sys-
tem, hence having a positive influence on the kinetic factors
for nucleation, and thereby it will trigger crystallization.
However, a continued shear may destroy crystalline nuclei as
they form and a steady nonequilibrium state can be expected.

In the present work we focus on the influence of a sta-
tionary shear on the ordering processes in a glassy system.
In Sec. II we describe our model system and the analysis
used to identify crystallinity and solidlike clusters. The simu-
lation results and outcomes of cluster analysis are shown in
Sec. III, where we also study the influence of strain and shear
rate on the ordering. We finish in Sec. IV with a discussion of
the main results.

II. SYSTEM AND PROCEDURES

Our system consists of 23 328 particles interacting
through a standard truncated and shifted Lennard-Jones po-
tential
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� and � are the characteristic energy and length scales and
rc=2.5� is the cutoff distance. The following reduced units
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are used in this work. The time is in units of �=��m /�,
where the mass m is set to unity. All distances are given in
units of �. The temperature is in units of � /kB, whereas the
pressure and the stress are in units of � /�3. The time step ��
used in our simulations is 0.005�.

We start with a system equilibrated in the liquid state at
the temperature T=1.65� /kB in a cubic simulation box �V
=L3 and L=30.2327�� with periodic boundary conditions in
all directions. After this, the system is quenched to the tem-
perature T=0.15� /kB within a time interval t=2.5�. In the
case of argon atoms with the Lennard-Jones parameters
� /kB=120 K and �=3.4 Å this corresponds to a cooling
rate �1013 K /s �21�. After such a rapid quench, the system
at this temperature is in a glassy state �22–25�. This is evi-
denced by the zero slope of mean square displacement on the
time scale of our simulations, which is a signature of “struc-
tural arrest.” The disordered character of the structure is also
evident from the split second peak of the pair distribution
function, typical of an amorphous material.

Before shearing, the system is allowed to “age” during t
=10 000 � without any external forcing. In order to shear the
system, we create two parallel solid walls by freezing all the
particles in the x-z plane over the range of three interparticle
distances from both ends of the simulation box in the y di-
rection. Both walls are amorphous. By using walls, we can
impose an average strain rate without any assumptions about
the resulting flow inside of the sample. A snapshot of the
simulation cell is presented in Fig. 1. Twelve independent
samples were prepared with the same procedure.

A constant shear rate 	̇ is then applied by moving in the x
direction all the atoms of the top wall with the instantaneous
velocity

Uwall = 	̇Lyex, �2�

whereas the particles of the bottom wall remain fixed; Ly is
the distance between the walls. Periodic boundary conditions
are applied along the x and z directions only. All the results

are for a constant normal pressure Pyy =1.1867� /�3 �corre-
sponding to the pressure observed initially�. Temperature is
controlled by rescaling of the velocity component of the par-
ticles along the neutral z direction, which is perpendicular to
the shear x and the velocity gradient y directions.

In order to identify the local structure and, in particular,
the appearance of solidlike clusters, we use the local order
analysis introduced originally in the work of Steinhardt et al.
�26� and developed by Frenkel and co-workers �7,27,28�. An
important advantage of this method is that �i� it allows one to
recognize the crystallinity regardless of a specific structure
and �ii� the crucial parameters here, such as local and global
order parameters, are rotationally invariant, so that the orien-
tation of clusters in space is irrelevant.

First of all, the local surroundings of each atom can be
characterized by a �2
6+1�-dimensional complex vector
with the following components:

q6m�i� =
1

Nb�i� 
j=1

Nb�i�

Y6m��ij,�ij� , �3�

where Y6m��ij ,�ij� are the spherical harmonics and Nb�i� de-
notes the number of the nearest neighbors of particle i; �ij
and �ij are the polar and azimuthal angles formed by the
radius-vector rij and some reference system. We define
“neighbors” as all atoms located within a given radius rc
=1.5� around an atom i, i.e., �rij�rc, where rc corresponds
practically to the first minimum in the pair distribution func-
tion. The local orientational order parameter can be defined
for each atom i as

q6�i� = �4�

13 
m=−6

6

�q6m�i��2	1/2

, �4�

which is rotationally invariant. Thus the global orientational
order parameter can be defined as an average of q6m�i� over
all N particles:

Q6 =� 4�

13 
m=−6

6 �i=1

N  j=1

Nb�i�
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i=1

N
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For perfect fcc, bcc, and hcp systems one has Q6=0.5745,
Q6=0.5106, and Q6=0.4848, respectively, whereas in a fully
disordered system in the limit of large sizes �e.g., a liquid�,
Q6 is close to zero �29�. Hence an increase of this quantity
provides the evidence for the formation of local crystallites.
To estimate the degree of ordering �crystallinity� in our sys-
tem we use, along with Q6, the potential energy as well as
the number of “solidlike” particles.

The occurrence of ordered structures can also be observed
in the behavior of the radial distribution function. However,
this function corresponds to the averaged result for the whole
system, and, as a consequence of this, can be insensitive to
the appearance of a few local clusters.

For the study of local structures we apply the following
cluster analysis �7�. For every pair of nearest neighbors, say
i and j, the following condition is considered:

xywall L eU �� �

0�wallU

yL

yyP

x

y

z

FIG. 1. �Color online� Snapshot of the simulation cell. Two
parallel amorphous walls �dark particles� restrict the sheared sys-
tem. The particles of the top wall are removed with the velocity
proportional to the distance between the walls Ly, which is variable
with the time due to the normal pressure Pyy. The particles of the
bottom wall are fixed.
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� 
m=−6

6

q̃6m�i�q̃6m
� �j�� � 0.5, �6�

where q̃6m�i� is the complex vector q6m�i� defined by Eq. �3�
and normalized in accordance with


m=−6

6

q̃6m�i�q̃6m
� �i� = 1. �7�

Condition �6� allows one to verify that atom j belongs to an
ordered structure around atom i. If atom i has seven or more
neighbors satisfying the condition �6�, then this atom is con-
sidered as solid-like, i.e., it is included in an ordered crystal-
line structure.

III. RESULTS

We now turn to the results, which quantify the effect of
shear on an initially amorphous sample. The time evolution
of the global orientational order parameter Q6 for various
values of the shear rate 	̇ is shown in Fig. 2. Note that the
results presented here have been averaged over different
runs. From these results, it appears clearly that the degree of
order in the system is enhanced by shear. Moreover, at the
larger values of the shear rate 	̇ the ordering takes place
rather rapidly; Q6 levels off after this initial transient. For
	̇=0.01 and 0.005�−1 the order parameter reaches a plateau
value with Q6�0.42 over the time scale of observation. At
lower values of 	̇ the rate of ordering �defined as the time
derivative of the order parameter� is lower and decreases
with the time, as is clearly seen from the change in slope in
the curves shown in Fig. 2. As a result, the time window t
=2500� presented in Fig. 2 is not sufficient to achieve a
maximal ordering at slow shear rates. It is particularly note-
worthy that the shear can initially prevent the formation of
small clusters, which would appear even in the absence of
shear. This weak suppression effect is observed for very

small shear rates 	̇=0.0001 and 0.000 01 �−1, where the val-
ues of Q6 are lower in comparison with the case of a sample
at rest. Nevertheless, the increase of the order parameter with
time is clearly detected even for these small shear rates. Our
first conclusion is therefore that shear enhances crystallinity
with a rate which depends on the shear rate.

Although the largest value of the order parameter Q6 ob-
tained by shearing the glass is low in comparison with Q6 of
a perfect fcc structure, it indicates a high level of crystallinity
in the system. The formation of crystalline ordered structures
in a sample can also be observed from the radial distribution
function as shown in Fig. 3�a� for a particular shear rate 	̇
=0.001 and different times after starting up of the shear. In
the first three curves the appearance of crystalline structures
is evident from the rise of the extra peak between the first
and second maxima in the distribution, which is a typical
signature of fcc structures. The pair correlation function cal-
culated at large times shows that the order extends over large
distances, with oscillations extending up to r�4�. Such a
long-range ordering could also be associated with layering of
the system under shear. To check this, we evaluated the den-
sity profiles at different times as a function of the distance
from the walls. As can be seen in Fig. 3�b�, which presents
the density profiles at t=500 and 2500� �the curves for inter-
mediate times are very similar to those presented in Fig.
3�b��, the transverse order is present, but not particularly pro-
nounced.

Moreover, the layering is weaker for t=2500�, whereas
the pair correlation function displays the more pronounced
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FIG. 2. �Color online� Evolution of the global orientational or-
der parameter Q6 at the various shear rates 	̇ as a function of time.
The shear rate increases from bottom to top. The full lines are linear
fits to the data. The arrow indicates the value of Q6 for a perfect fcc
structure.
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FIG. 3. Structural characteristics of the sample under shear �at
the shear rate 	̇=0.001�−1�. �a� Radial distribution function at the
different times after starting the shear flow: t=0, 250, 500, 750,
1500, and 2500� �from bottom to top�. The curves are shifted up-
ward for clarity. �b� Density profiles for two different times as av-
eraged over a time window of 10�.
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structure. This observation leads to the conclusion that the
long-range order observed in the pair correlations is caused
mainly by the formation of a crystalline cluster.

A. Strain and strain rate dependence

The strain dependence of the global order parameter Q6 is
shown in Fig. 4. It can be seen that the order parameter
increases with the strain 	 for all values of the shear rate.
Moreover, the evolution of the order parameter with strain is
clearly separated into two steps. The first stage, during which
the order parameter rises rapidly, is shear rate dependent.
After this fast increase, Q6 reaches a “universal” �shear rate
independent� behavior shown by a straight dashed line in
Fig. 4. At this stage, the order parameter demonstrates a very
slow increase and eventually levels off at large strains.

In order to quantify the influence of shear rate on the
ordering, we introduce the “ordering strain” 	m. This quan-
tity defines the strain scale, where the evolution of Q6
merges with the universal behavior shown by a dashed line
in Fig. 4. The shear rate dependence of 	m is plotted in the
inset of Fig. 4. The data for 	m�	̇� can be fitted either by a
power law or by a logarithmic dependency on the strain rate:

	m � 	̇1+n, n = − 2/3, �8a�

	m = 	0 +
1

2
ln�	̇�, 	0 = const. �8b�

It should be noted that the power law behavior is supported
by the idea that the typical relaxation time t� of a sheared
glassy system decreases with the strain rate as 	̇−2/3 �see Ref.
�30��. Assuming that a similar dependency holds in our crys-
tallizing system and the initial rise of Q6 corresponds to a
typical relaxation time, we obtain

tm � 	̇−2/3, �9�

where tm=	m / 	̇. Such a power-law decay of the crystalliza-
tion time with the shear rate could also be related to the one
found experimentally in Refs. �11,13�.

Although the possible relation between the characteristic
time scale t� and the time of ordering tm under shear is at-
tractive �30�, it is seen in the inset of Fig. 4 that the power
law with Eq. �8a� does not provide a perfect fit of 	m at shear
rates 	̇�0.01�−1 and higher, whereas the logarithmic depen-
dence �8b� gives a good fit to the data for all values of the
shear rate.

We finally discuss our results with regard to recent obser-
vations reported by Duff and Lacks �16�. These authors stud-
ied the ordering of a similar system under an oscillatory
strain in the low temperature and low shear rate limit. A
degree of ordering comparable to the one observed in our
study was obtained after two cycles with the amplitude 0.25.
As a result, it would correspond to a total strain 	m=0.5,
which is comparable to the values obtained by us at the low-
est shear rates.

B. Nature of the semicrystalline state

Although the system clearly becomes more ordered under
the influence of strain, the degree of order achieved by our
system is low in comparison to that of a perfect crystal. A
very remarkable fact is that, at large strains, the order param-
eter Q6 appears to be dependent only on strain and not on
strain rate. This observation indicates some “universality” of
the semicrystalline state created in the system. This observa-
tion is, however, easily explained by considering the velocity
profiles in the sheared systems. The velocity profiles pre-
sented in Fig. 5 exhibit a strong localization of the shear in
two shear bands located near the solid walls. The semicrys-
talline part of the sample, on the contrary, flows with an
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FIG. 4. �Color online� Main: Strain dependence of the global
orientational order parameter Q6 at the different shear rates 	̇
=0.0001, 0.0005, 0.001, 0.005, and 0.01�−1 �from left to right�. The
correspondence between curves and shear rates is the same as in
Fig. 2. The dashed line is the linear interpolation, indicating the
steady behavior �plateau� in the strain dependence of order param-
eter. Inset: Shear rate dependence of the strain 	m, at which the
order parameter reaches the plateau value. Errors are defined by the
change of slope in Q6�	�. The solid and dotted curves are the loga-
rithmic and power-law approximations, respectively �see text�.

5 10 15 20
0

0.2

0.4

0.6

0.8

1

y/σ

<
u(

y)
/U

w
al

l>
∆γ

5 10 15 20
0

0.5

1
γ=3

γ=4

γ=5

γ=6

γ=7

dγ/dt=0.01τ−1

dγ/dt=0.001τ−1

γ=7

γ=3

FIG. 5. �Color online� Rescaled velocity profile as a function of
distance from the bottom �unmoved� wall. Main: Shear with 	̇
=Uwall /Ly =0.01�−1 at different points of the strain 	 above 	m=3.
The broken line corresponds to u /Uwall=0.36. Inset: Shear rate 	̇
=0.001�−1 at two different strains above 	m. Results are averaged
over the time window t=�	 / 	̇, where �	=0.01 is the strain scale.
All runs exhibit a similar behavior.

ANATOLII V. MOKSHIN AND JEAN-LOUIS BARRAT PHYSICAL REVIEW E 77, 021505 �2008�

021505-4



almost uniform velocity �although some plastic activity is
also taking place in this “nonflowing” part�. The situation
described here is very similar to the shear localization ob-
served in a flowing glass by Varnik et al. �31�. The nanocrys-
talline solid is submitted to a stress, which is insufficient to
cause flow, while two strongly fluidized bands sustain the
shear entirely. What is remarkable here is the high value of
the shear rate and the stress at which this coexistence is
observed �see Fig. 6�. While the yield of the solid in Ref.
�31� was observed for a strain rate slightly above 0.001�−1

and a stress of 0.6� /�3, our results indicate here a yield
stress �Y �0.8� /�3.

We expect that this nanocrystalline state consists of an
assembly of crystallites with disordered orientations. This set
of crystallites can be quantitatively described by means of
the cluster analysis presented in Sec. II. The results of this
analysis are shown in Fig. 7 as a function of the strain 	 for
a particular shear rate, since the results for other values of the
shear rate are very similar. The sample is imperfectly crys-
tallized in such a way that only �80% of the particles are
involved in crystalline clusters. Obviously, the rapid buildup
of crystalline order between 	=0 and 	m corresponds to a
rapid decrease in the potential energy �see Fig. 7�a��. The
next interesting feature is that the number of solidlike clus-
ters �see Fig. 7�b��, after a significant growth with the strain,
remains essentially constant, whereas the evolution of the
potential energy and of the order parameter indicates a con-
tinued ordering process in the system. This leads to the con-
clusion that the system under shear decomposes rapidly into
a set of crystalline “grains.” The subsequent evolution con-
sists of rearrangements involving the grinding of grain
boundaries and the alignment of neighboring grains without
any significant coarsening.

Another interesting information about the final state of the
system can be extracted from the size distribution of the
crystalline grains, which is presented in Fig. 8 at three dif-
ferent shear rates. As can be seen from these histograms, the
distribution is dominated by small grains involving less than
50 particles. At first sight, the distribution appears to be,

within the accuracy of our data, shear rate independent. This
is consistent with the universal behavior of the order param-
eter observed in Fig. 4. Nevertheless, the distribution dis-
plays a relatively slow decaying tail for cluster sizes larger
than 100 particles. This decay can be well approximated by a
power law �see inset of Fig. 8�. Closer examination reveals
that the weight of this tail depends weakly on shear rate and
that larger clusters can be observed at lower shear rates. Un-
fortunately, the small number of large clusters makes a sys-
tematic investigation of this effect difficult.
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IV. DISCUSSION: SHEAR SUPPRESSION
VERSUS SHEAR ENHANCEMENT

Our results demonstrate clearly that the shear increases
initially the tendency of a one-component amorphous system
toward crystalline order. This behavior should be discussed
in the context of the recent studies by Blaak and Löwen, who
demonstrated on the contrary a shear suppression of the
nucleation rate at moderate undercooling �17�, and of the
recent results of Ref. �9� concerning the evolution of the
nucleation barrier with temperature. Clearly, the main influ-
ence of shear at low temperature will be on the kinetic, rather
than on the thermodynamic, aspects of the transition. In the
absence of shear, the diffusivity is essentially zero, so that
the system does not evolve with time. However, according to
the classical nucleation picture, one would expect the appear-
ance of crystallinity in the form of a few isolated nuclei after
a significant time lag associated with the free energy barrier.
Our results, on the contrary, indicate an instantaneous in-
crease of crystalline order as soon as the shear is started that
is more consistent with a spinodal description. The system is
rapidly driven toward a new energy minimum as soon as a
mobility is reinstalled by the shear flow. The order appears
uniformly inside the system, which relaxes locally toward a
crystalline structure on a time scale, which is characteristic
of a sheared glass.

After this initial relaxation, a much slower stage of defect
and grain boundary annealing takes place. During this sec-
ond stage, the state of the system appears to be independent
on the strain rate and is determined by the amount of strain
only. The system consists of two rapidly flowing sheared
bands, separated by a slab of a nanocrystalline solid, which
undergoes a very progressive evolution through plastic

rearrangements. This nanocrystalline solid appears to have a
high yield stress in comparison with a similar Lennard-Jones
glass.

It is remarkable that, although the flow rate at the bound-
ary increases, the evolution of the solid slab seems to be
insensitive to this flow rate. A possible explanation is in the
fact that the energy in a yield stress system is dissipated by
the flow, which will serve to activate annealing processes in
the solid slab. As a result, the local structural transformations
are defined essentially by deformations and insensitive to
strain rate.

The nonflowing part of the system can be mainly de-
scribed as a collection of the crystalline grains of relatively
small size. The stationarity in the number of crystallites in-
dicates that the disruption of crystalline order by the shear at
the boundaries compensates completely the coarsening pro-
cess, which would be expected in a system with a nonzero
atomic diffusion.

Finally, it appears that the shearing of an initially amor-
phous one-component system constitutes a reproducible way
to obtain a nanocrystalline state, which was sometimes taken
in the past as a possible model of an amorphous system. It
will be interesting to study such a state for its structural,
vibrational, and rheological properties, that should be inter-
mediate between those of a glass and of a perfect crystal.
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